Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 154: 111118, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319931

RESUMO

The Java medaka (Oryzias javanicus) is distributed in tropical brackish water and is considered as an ecotoxicological experimental organism for assessing diverse pollutions and global climate change effects in the ocean. In this study, we sequenced and assembled the genome of O. javanicus using the Oxford Nanopore technique and anchored the scaffolds to the 24 genetic linkage map of a sister species Oryzias melastigma. The assembled genome consisted of 773 scaffolds including 24 LG-based scaffolds, and the estimated genome length was 846.3 Mb (N50 = 19.3 Mb), containing 24,498 genes. As detoxification processes are crucial in aquatic organisms, antioxidant-related genes including glutathione S-transferases, superoxide dismutase, catalase, and glutathione peroxidase were identified in this study. In the genome of O. javanicus, a total of 21 GSTs, 4 SODs, 1 CAT, and 7 GPxs were identified and showed high similarities between sister species O. melastigma and Oryzias latipes. In addition, despite having 8 classes of cytosolic GSTs family, medaka showed no presence of GST pi and sigma classes, which are predominantly found in carp and salmon, but not in neoteleostei. This study adds another set to genome-library of Oryzias spp. and is a useful resource for better understanding of the molecular ecotoxicology.


Assuntos
Oryzias/genética , Animais , Organismos Aquáticos , Catalase , Ecotoxicologia , Genoma
2.
J Ginseng Res ; 38(4): 278-88, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25379008

RESUMO

BACKGROUND: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. METHODS: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. RESULTS: Assemblies were generated from ∼85 million and ∼77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases. We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. CONCLUSION: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...